翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Algebraic computation : ウィキペディア英語版
Symbolic computation

In computational mathematics, computer algebra, also called symbolic computation or algebraic computation is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although, properly speaking, computer algebra should be a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variables that have not any given value and are thus manipulated as symbols (therefore the name of ''symbolic computation'').
Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programming language (usually different from the language used for the implementation), a dedicated memory manager, a user interface for the input/output of mathematical expressions, a large set of routines to perform usual operations, like simplification of expressions, differentiation using chain rule, polynomial factorization, indefinite integration, etc.
At the beginning of computer algebra, circa 1970, when the long-known algorithms were first put on computers, they turned out to be highly inefficient. Therefore, a large part of the work of the researchers in the field consisted in revisiting classical algebra in order to make it effective and to discover efficient algorithms to implement this effectiveness. A typical example of this kind of work is the computation of polynomial greatest common divisors, which is required to simplify fractions. Surprisingly, the classical Euclid's algorithm turned out to be inefficient for polynomials over infinite fields, and thus new algorithms needed to be developed. The same was also true for the classical algorithms from linear algebra.
Computer algebra is widely used to experiment in mathematics and to design the formulas that are used in numerical programs. It is also used for complete scientific computations, when purely numerical methods fail, like in public key cryptography or for some non-linear problems.
== Terminology ==

Some authors distinguish ''computer algebra'' from ''symbolic computation'' using the latter name to refer to kinds of symbolic computation other than the computation with mathematical formulas. Some authors use ''symbolic computation'' for the computer science aspect of the subject and "computer algebra" for the mathematical aspect. In some languages the name of the field is not a direct translation of its English name. Typically, it is called ''calcul formel'' in French, which means "formal computation".
Symbolic computation has also been referred to, in the past, as ''symbolic manipulation'', ''algebraic manipulation'', ''symbolic processing'', ''symbolic mathematics'', or ''symbolic algebra'', but these terms, which also refer to non-computational manipulation, are no more in use for referring to computer algebra.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Symbolic computation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.